
Using	'loat	values	with	UIView:		Identifying	Problems	and	Creating	Solutions	

If	you	have	experience	designing	views	in	XCode	you	likely	have	run	into	an	instance	
where	a	UIView	or	one	of	its	subclasses	is	rendered	blurry.		This	is	caused	by	anti-
aliasing,	an	attempt	to	avoid	jagged	looking	edges	by	blending	with	the	colors	of	the	
layer	below	it.		This	blog	discusses	both	simple	and	complex	issues	with	rendering	
UIViews	with	anti-aliasing.	

In	the	image	below,	the	left	text	and	image	have	been	anti-aliased.	

	

The	difference	can	sometimes	be	subtle.		The	image	of	left	below	is	anti-aliased.	

	

You	can	see	there	are	more	gray	pixels	around	the	edges	in	the	image	on	the	left.		
The	problem	can	snowball	if	a	view	is	anti-aliased	all	of	its	subviews	may	be	blurred	
as	well.		This	can	become	more	apparent	on	a	retina	device.		Since	it	is	not	always	
easy	to	see	where	subtle	blurs	may	have	occurred,	the	iOS	Simulator	has	a	nice	
feature,	Debug->Color	Misaligned	Images.		This	will	highlight	the	UIViews	that	have	
been	misaligned	so	you	can	easily	spot	them.	

	

The	cause	can	be	as	simple	as	using	'loat	values	for	sizing	views.		Of	course	the	
simple	solution	is	to	always	use	an	int	type.	

If	only	it	were	that	simple.		One	of	my	favorite	mathematical	proofs	is	the	proof	of	
2=1.		Using	only	simple	Algebra	of	doing	the	same	operation	to	both	sides	of	the	

equation	repeatedly	is	needed.		There	is	a	fundamental	'law	in	the	proof	but	it	
typically	goes	overlooked	until	you	get	to	the	'inal	step	where	you	show	2=1.	

Without	paying	speci'ic	attention	to	view	sizes,	it	is	easy	to	overlook	where	'loat	
sizes	might	occur	especially	when	you	begin	to	size	dynamically.		For	example	you	
may	want	to	center	a	view	inside	of	another	view	by:	

UIView	*insideView	=	[UIView	alloc]	
initWithFrame:CGFrameMake(100,100,outsideView.frame.size.width/
2,outsideView.frame.size.height/2)];	

If	either	the	width	or	the	height	is	an	odd	number	of	the	outsideView	you	will	get	a	
misaligned	view.	

UIPagingControl	

Other	related	issues	to	'loat	sized	views	become	more	interesting,	or	infuriating	
depending	on	your	view.		Recently	I	created	a	view	using	something	similar	to	a	
UIPagingControl.		I	had	seven	views	evenly	spaced	out	inside	of	each	page.		To	attain	
the	exact	page	size	in	the	speci'ication,	I	used	a	'loat	value	for	each	view	and	the	
overall	size	of	each	page	was	a	'loat	as	well.			

The	app	looked	great	on	the	'irst	page;	the	animations	within	each	view	worked	as	
expected.		The	Color	Misaligned	Images	did	not	identify	any	issues.		I	then	scrolled	to	
the	second	page.		It	still	looked	great,	but	nothing	animated.		Scrolling	to	the	third	
page	threw	the	contentOffset	out	of	whack.		The	debugger	identi'ied	the	
contentOffset	as	an	Absurd	Value.		We	changed	the	speci'ication	by	a	couple	of	pixels	
to	divide	evenly	by	seven	and	all	was	well	again.	

The	key	here,	like	anything	in	the	software	development	life	cycle,	is	to	start	thinking	
about	your	design	early	in	a	sense	to	make	sure	that	your	views	will	come	out	to	
integral	values.	

Constraints	

Another	way	that	views	may	be	created	dynamically	is	with	constraints.		When	a	
view	is	related	to	another	view	with	'loat	sizes	other	hidden	issues	can	surface.		For	
example,	lets	say	that	you	want	to	create	three	equally	spaced	views	inside	of	
another	view	using	Visual	Format	Language.	

NSString	*format	=	@”|[view1][view2(==view1)][view3(==view1)]|”;	

In	this	case	if	the	parent	view	is	not	evenly	divisible	by	three,	another	type	of	issue	
may	arise.		In	a	recent	project	with	similar	constraint	code	to	the	one	above	there	
was	a	delay	of	over	two	seconds	when	pushing	a	new	view	controller	on	top	of	the	
one	with	these	constraints,	but	only	on	retina	devices.		After	digging	into	

Instruments,	the	didMoveFromWindow:toWindow	was	having	dif'iculty	optimizing	
constraints	using	NSISEngine	as	you	can	see	in	the	screen	shot	below.	

	

Once	again,	forethought	in	your	design	speci'ication	will	save	you	headaches	in	the	
future.	

Closing	

This	posts	presents	problems	with	non-integral	UIView	sizing.		It	shows	how	to	
identify	and	solve	those	issues.		By	thinking	about	sizing	early	in	the	software	
development	lifecycle	you	can	avoid	absurd	values	such	as	2=1.		If	you	have	
questions	you	may	contact	me	at	strohtennis	@	gmail.	

