
Interopera)ng	between	Swi0	and	an	exis)ng	Objec)ve-C	code	base	

So	you	want	to	adopt	Swi-	as	your	language	for	developing	iOS	but	you	
already	have	a	great	project	wri:en	in	Objec;ve-C	that	works	great	and	has	
been	thoroughly	tested.		That	is	where	interoperability	comes	in.		You	can	
start	adding	Swi-	classes	to	your	code	now.		This	tutorial	will	get	you	
started	in	connec;ng	your	Swi-	and	Objec;ve-C	code	to	each	other.			

There	is	a	sample	project,	ColorMatcher	that	follows	the	points	being	made	
in	this	tutorial.		The	project	is	a	bit	contrived	to	make	certain	points	of	
interoperability.	

To	begin	adding	Swi-	use	XCode	6	to	add	“New	File”	and	select	a		“Swi-	
File”.		Give	the	class	a	name	and	choose	“Create”.			The	first	;me	you	
choose	to	make	a	new	Swi-	file,	XCode	will	ask	you	if	you	want	to	configure	
an	Objec;ve-C	bridging	header.		The	bridging	header	will	expose	the	
exis;ng	Objec;ve-C	code	to	Swi-.		It	is	likely	you	will	need	this	at	some	
point	so	confirm	that	you	want	the	bridging	header.	

Bridging	from	Objec)ve	C	to	Swi0	
In	the	project	will	be	two	new	files,	a	.swi-	file	and	–Bridging-Header.h	file.		
In	the	sample	project	these	are	the	ESTimer.swi-	and	the	ColorMatcher-
Bridging-Header.h.		When	the	bridging	header	is	first	created	it	is	blank	with	
the	excep;on	of	one	comment.	In	the	bridging	header	add	the	headers	for	
any	classes	that	should	be	exposed	to	Swi-	classes.		The	direc;on	is	
important	to	note	here,	this	is	Objec;ve-C	being	accessed	in	Swi-.		Later,	
we	will	discuss	traversing	the	other	direc;on.		The	bridging	header	is	now	
part	of	the	project	and	should	be	commi:ed	along	with	other	code	if	you	
are	using	source	control.		

In	the	newly	created	Swi-	file	the	only	non-commented	code	is	the	import	
of	Founda;on.		Founda;on	contains	NSObject,	NSArray	and	so	on.		The	
sample	project	also	imports	UIKit	so	we	can	have	that	available	as	well.		In	
the	class	signature	we	need	to	decide	if	this	class	will	be	derived	from	an	
Objec;ve-C	class	or	if	it	will	be	pure	Swi-.		In	the	sample	project,	ESTimer	
extends	from	NSObject	so	it	is	derived	from	an	Objec;ve-C	class.			As	a	
derived	class,	it	easy	to	instan;ate	a	new	ESTimer	with	standard	Objec;ve	C	
as	follows:		

https://github.com/strohtennis/Sample

ESTimer timer = [[ESTimer alloc] init];

The	@objc	AAribute	
The	@objc	a:ribute	can	be	added	to	a	class,	property	or	method	to	expose	
your	code	to	Objec;ve	C.		A	pure	Swi-	class	with	the	@objc	a:ribute	before	
the	keyword	class	will	then	automa;cally	add	@objc	to	all	proper;es	and	
methods	in	that	class.		In	a	pure	Swi-	class,	a	class	level	ini;alizer	is	used,	
for	example:	

class func newInstance() -> ESTimer {
 return ESTimer
 }

The	Objec;ve	C	class	could	then	instan;ate	a	new	ESTimer	by	calling:	

ESTimer *timer=[ESTimer newInstance];	

Swi0	Proper)es	
In	Swi-	all	values,	including	objects,	are	guaranteed	to	be	non-nil.		
However,	values	coming	from	Objec;ve-C	may	be	nil.		Here	Swi-	allows	us	
to	assign	a	value	as	an	implicitly	unwrapped	op;onal	using	an	exclama;on	
mark.		Best	prac;ce	suggests	checking	op;onals	before	using	them.		In	the	
sample	project	you	will	see	that	the	internalTimer	property	was	assigned	as	
an	op;onal	and	is	ini;alized	later.	

var internalTimer:NSTimer!	

In	the	sample	project	the	myCounterView	property	will	be	a	
CountdownView.		CountdownView	is	an	Objec;ve	C	class	so	it’s	header	
needs	to	be	added	to	the	ColorMatcher-Bridging-Header.h.		No;ce	in	the	
sample	project	that	mCounterView	is	created	as	an	op;onal	AnyObject.		
AnyObject	is	the	Swi-	equivalent	of	Objec;ve	C	id.		The	reason	why	it	was	
assigned	as	an	op;onal	AnyObject	instead	of	a	CountdownView	is	that	
when	the	proper;es	of	the	Swi-	class	are	created	the	Bridging-Header	isn’t	
in	scope	yet.	

To	instan;ate	an	Objec;ve	C	class	in	Swi-	use	the	Swi-	version	of	its	
constructor	instead	of	the	Objec;ve-C	version:	

myCounterview = [[CountdownView alloc]
initWithFrame:CGRectMake(0, 0,20, 20)];

Swi-	uses:	

myCounterView = CountdownView(frame:
CGRectMake(0,0,20,20))

Alloc	has	been	handled	for	automa;cally	and	like	other	inits	imported	from	
Objec;ve	C,	the	init	or	initWith	has	been	truncated	from	the	name.		In	the	
sample	project,	Command	click	on	the	word	frame	on	that	line	to	be	
directed	to	the	Swi-	version	of	the	UIView	class.	

Implicitly	Unwrapped	Op)onals	
Before	using	myCounterView	in	the	sample	project	check	and	unwrap	the	
implicitly	unwrapped	op;onal.		

if let counterView = view as? CountdownView{
}

In	the	code	above	the	as?	first	checks	to	see	if	myCounterView	is	non-nil	
and	can	be	downcast	to	CountdownView.		If	true,	it	will	assign	it	to	
counterView	as	a	CountdownView.		Inside	that	if	block	counterView	can	be	
safely	used.		If	you	are	sure	that	the	downcast	will	succeed	a	forced	cast	can	
be	used.		However,	a	run;me	error	will	occur	if	it	does	not.		For	example:	

let counterView = myCounterView as? CountdownView
return counterView!

Conver)ng	Methods	from	Objec)ve	C	
Method	names	converted	from	Objec;ve	C	will	use	dot	syntax	style.		The	
first	part	of	the	method	name	appears	a-er	the	dot.	For	methods	with	
parameters,	the	first	parameter	goes	inside	the	parenthesis	and	all	
subsequent	parameters	must	contain	their	argument	names	as	well.	If	there	

are	no	parameters	you	use	().		For	example,	the	following	code	in	Objec;ve	
C:	

internalTimer = [NSTimer
scheduledTimerWithTimeInterval:1.0f target:self
selector:@selector(timerFunction:) userInfo:nil
repeats:YES];

Gets	converted	in	Swi-	to:	

self.internalTimer =
NSTimer.scheduledTimerWithTimeInterval(1.0, target:
self, selector: "timerFunction", userInfo: nil,
repeats: true);

Remember	to	use	the	override	keyword	if	you	implement	any	superclass	
methods.		

Selector	Stucture	
SEL	in	Objec;ve-C	has	been	replaced	by	a	Selector	structure.		No;ce	in	the	
code	above	the	@selector(;merFunc;on:)	has	been	changed	to	a	Swi-	
string	“;merFunc;on”.	

Closures	
Blocks	in	Objec;ve	C	are	iden;cal	to	closures	in	Swi-	and	can	be	passes	
back	and	forth.		The	one	excep;on	is	that	variables	are	passed	by	reference	
and	are	therefore	mutable.		In	the	sample	code	you	will	see	that	the	
Objec;ve	C	version	of:	

dispatch_async(dispatch_get_main_queue(), ^{
});

In	Swi-	has	the	following	syntax:	

dispatch_async(dispatch_get_main_queue(), {
})

Swi0	Delegate	of	an	Objec)ve	C	Protocol	

To	use	an	Objec;ve	C	protocol	the	Objec;ve	C	header	file	needs	to	include	
the	Bridging-Header	file	and	the	protocol	name	needs	to	be	added	to	the	
class	signature.		The	protocols	in	the	class	signature	go	in	a	comma-
separated	list	a-er	the	superclass	if	there	is	one.			In	the	sample	project	the	
ControllerDelegate	from	the	ViewController	is	implemented	in	the	Swi-	
ESTimer	class.			

Proper;es	are	by	default	strong	in	Swi-	so	the	delegate	property	is	assigned	
as	weak.		It	is	also	an	op;onal	because	we	might	not	have	a	delegate.		
When	calling	the	delegate	method,	first	check	the	delegate	is	non-nil	and	
that	it	responds	to	the	selector.		For	example:	

self.delegate?.timeIsUp()

Bridging	from	Swi0	to	Objec)ve	C	
To	import	your	Swi-	code	into	Objec;ve	C,	the	generated	header	needs	to	
be	added.		Looking	in	the	project	and	you	won’t	see	the	file	as	the	compiler	
generates	it	as	ProjectName-Swi-.h.		For	the	sample	project,	the	import	in	
ViewController.m	looks	like:		

#import "ColorMatcher-Swift.h"
		
Control	clicking	on	the	header	will	navigate	to	the	en;rety	of	the	swi-	
interface	and	shows	how	the	class	can	be	implemented	from	the	Objec;ve	
C	class.		This	generated	header	does	not	need	be	commi:ed	with	your	SVN	
commit.	

If	using	a	Swi-	class	in	a	framework,	instead	of	impor;ng	the	generated	
header	use	a	forward	declara;on	to	the	class,	i.e.	@class	ESTimer;		In	
the	.m	implementa;on	file	import	using	framework	style	
<NameOfFrameWork/NameOfFrameWork-Swi-.h>	

Once	the	imports	are	in	place,	the	Swi-	code	can	be	accessed	as	though	it	
were	Objec;ve	C.		In	the	sample	project,	there	are	examples	of	the	Swi-	
ESTimer	and	ESTimerDelegate	used	throughout	the	Objec;ve	C	
ViewController	class.		No;ce	the	@obc	a:ribute	was	added	to	the	
ESTimerDelegate	protocol	so	that	it	could	be	accessed	in	the	Objec;ve	C	
code.	

There	are	limita;ons	to	what	can	be	used	from	Swi-.		Swi-	specific	features	
such	and	Generics	and	Tuples	cannot	be	imported	into	Objec;ve	C.		Items	
such	as	enums	and	structs	defined	in	Swi-	are	inaccessible.		In	the	sample	
project	the	CurrentTimerState	enum	is	unavailable.		No;ce	the	enum	does	
not	show	in	the	generated	header.	

Storyboard	and	Xib	Files	using	Swi0	
Connec;ng	to	storyboard	or	xib	files	is	the	same	as	with	Objec;ve	C.	
Control-drag	to	connect	IBOutlets	and	IBAc;ons.		Swi-	will	automa;cally	
assign	IBOutlets	as	weak	and	nil.		Remember	that	proper;es	can’t	be	nil,	
however,	when	the	associated	storyboard	or	xib	file	is	ini;alized	it	will	be	
converted	to	an	implicitly	unwrapped	op;onal.	

Bridging	Data	Types	
Swi-	will	import	types	such	as	NSString	to	the	Swi-	String	class.		However,	
there	are	some	methods	that	need	a	bridge	by	using	a	cast,	although	no	
op;onal	is	needed	here.		For	example	to	get	the	doubleValue	from	a	
UITextField:	

(totalTextField.text as String).doubleValue()	

For	numbers,	Swi-	bridges	numeric	data	types:	Int,	UInt,	Float,	Double	and	
Bool	all	to	NSNumber.		NSArray	is	bridged	as	an	array	of	AnyObject[]	and	
should	be	down	cast	with	the	checked	implicitly	unwrapped	op;onal	as	
seen	earlier.	

Closing	
This	post	presents	interoperability	between	Swi-	and	an	exis;ng	Objec;ve	
C	project.		Although	not	exhaus;ve,	you	should	be	well	on	your	way	to	
confidently	adding	Swi-	to	your	project.	If	you	have	ques;ons	you	may	
contact	me	at	strohtennis	@	gmail.

