
iOS7	Tutorial	Series:	Map	Kit	

Map	Kit	has	some	nice	additions	for	iOS7	that	build	on	the	strong	foundation	
present	in	the	iOS	6	SDK.		This	post	includes	a	sample	application	that	demonstrates	
each	new	feature:	you	will	@ind	how	to	circle	the	world,	enclose	your	pins	in	one	
view,	@ind	new	ways	to	draw	overlays,	get	directions,	create	a	camera	and	take	a	
photo	with	it.	

Spanning	the	180th	Meridian.			
You	may	have	already	noticed	on	your	device	that	you	can	now	pan	around	the	
world	in	an	East-West	direction	so	that	you	can	view	Hawaii	and	Japan	at	the	same	
time.		On	iOS	7	you	can	programmatically	show	regions	that	span	the	180th	meridian	
as	well.		Here	is	an	example	of	setting	a	MKMapView	with	a	one	thousand	meter	
radius	on	the	180th	meridian	at	the	equator:	

map.region = MKCoordinateRegionMakeWithDistance(
 CLLocationCoordinate2DMake(0, 180),
 1000.0 * 1000.0,
 1000.0 * 1000.0
);

Ensuring	Visibility	of	Annotations	
In	a	recent	project	we	spent	time	calculating	how	large	a	region	needed	to	be	to	
display	a	group	of	pins	on	the	map.		With	iOS7	there	is	a	new	method	of	MKMapView	
showAnnotations:animated:	on	MKMapView	that	positions	the	map	to	show	the	
given	annotations	to	the	fullest	extent	possible.		In	the	sample	project	you	will	see	
where	pins	were	added	to	the	map	using	this	method:	

[_mapView showAnnotations:@[pointRavens,pointSteelers,pointBengals,
pointBrowns] animated:NO];

I	have	found	that	this	doesn’t	always	work	perfectly	with	small	regions.		Although	
the	point	might	be	on	the	screen,	the	pin	associated	with	it	might	not.		One	way	a	
developer	can	increase	the	size	of	the	region	slightly	is	by	using	the	camera	property	
of	the	map	view	to	zoom	out:	

_mapView.camera.altitude *=1.4;	

Additionally,	annotation	views	in	iOS	7	now	track	the	map	as	it	is	manipulated	by	the	
user,	which	means	they	will	stay	upright,	face	the	screen,	and	stay	the	same	size.		
Apps	that	were	doing	lots	of	calculations	attempting	to	keep	the	annotation	in	the	
right	place	as	the	map	changes	won’t	work	anymore.		With	3D	maps	the	information	
is	non-linear	and	you	app	will	have	dif@iculty	interpolating	the	correct	position	on	
the	screen,	so	let	the	Map	Kit	do	the	heavy	lifting	for	you.	

MKOverlayRenderer	replaces	MKOverlayView	
MKOverlayView	is	now	deprecated	and	replaced	by	the	more	ef@icient	
MKOverlayRender,	which	doesn’t	need	to	inherit	from	UIView.		Accordingly,	all	

subclasses	and	other	classes	that	were	associated	with	MKOverlayView	have	been	
replaced	with	renderer	equivalents.		For	example,	an	MKPolygonView	(deprecated)	
is	now	an	MKPolygonRenderer.		Here	is	a	sample	of	using	MKOverlayRenderer:	

-(MKOverlayRenderer *)mapView:(MKMapView *)mapView rendererForOverlay:
(id<MKOverlay>)overlay{

MKPolygonRenderer *polygonRenderer = [[MKPolygonRenderer alloc]
initWithOverlay:overlay];

 polygonRenderer.strokeColor =[UIColor blackColor];
 polygonRenderer.fillColor =[UIColor redColor];
 return polygonRenderer;
}

Overlays	and	Z-Indexing	
The	view	hierarchy	of	an	MKMapView	consists	of	seven	layers	of	the	map	that	are	
stacked	on	top	of	each	other.		At	the	bottom	of	the	stack	is	the	map	grid,	followed	by	
the	Base	Map,	MKOverlayLevelAboveRoads,	Labels,	MKOverlayLevelsAboveLabels,	
3D	Buildings	and	Annotation	Views.		You	probably	noticed	that	the	two	
MKOverlayLevel	values	are	the	two	oddly	named	layers,	and	they	are	related	to	a	
new	iOS	7	feature	of	Map	Kit.		When	creating	your	overlay	you	can	now	choose	one	
of	those	two	MKOverlayLevel	options,	and	Map	Kit	will	insert	your	overlay	at	that	
layer:	

[_mapView addOverlay:parkPolygon level:MKOverlayLevelAboveRoads];

This	new	feature	is	very	useful	if	you	have	a	secondary	overlay	that	is	less	important	
than	the	labels	on	the	map,	and	would	otherwise	impair	the	user’s	use	of	the	map	if	
simply	placed	on	top	as	in	the	iOS	6	SDK.		A	good	example	would	be	an	app	that	
overlays	a	background	on	all	state	parks.		If	the	user	happens	to	be	at	a	park	and	
wants	to	browse	points	of	interest	or	navigate	a	hiking	trail,	the	background	overlay	
could	obscure	those	map	features	if	it	is	drawn	at	the	highest	layer.

MKGeodesicPolyline	
MKPolyline	will	draw	a	straight	line	from	one	location	to	another	on	a	2D	map;	
however,	in	the	iOS7	SDK	you	can	now	draw	a	line	that	follows	the	earth’s	spherical	
dimensions	with	MKGeodesicPolyline.		As	a	developer,	swiching	between	the	two	
behaviors	is	as	easy	as	changing	the	class	from	MKPolyline	to	MKGeodesicPolyline.		
There	is	not	much	difference	between	the	two	when	showing	short	distances,	but	
with	long	distances	MKGeodesicPolyline	looks	like	a	line	showing	an	arcing	@light	
path.	

geoPolyLine = [MKGeodesicPolyline polylineWithCoordinates:points
count:2];

MKTileOverlay	
New	in	iOS	7	is	the	ability	to	replace	areas	of	the	map	using	MKTileOverlay.		A	new	
MKMapView	property	canReplaceMapContent	allows	you	to	choose	if	you	want	
Apple	Map	data	to	be	loaded	and	drawn.	If	this	value	is	YES,	you	will	need	to	provide	
your	own	tiles	in	a	template	string	used	to	build	URLs	so	the	map	view	can	locate	

the	map	tiles	it	needs.		Unless	you	are	restricting	your	tiles	to	a	small	area,	you	will	
most	likely	want	to	store	these	on	a	webserver	instead	of	including	them	in	the	app	
bundle.		The	MKTileOverlay	coordinate	system	uses	square	grids	with	0,0	at	the	
upper	left,	although	you	could	set	geometryFlipped	to	YES	and	have	the	origin	in	
the	lower	left	instead.		Zoom	levels	grow	by	powers	of	two,	so	at	zoomLevel	zero	
there	is	one	square	and	for	example	at	zoomLevel	three	there	are	23	or	8	tiles	in	each	
direction.		Since	this	grows	exponentially	you	can	see	how	much	data	you	might	
need	even	for	a	small	area.		Below	is	an	example	of	setting	the	tile	overlay	with	a	
URL	template:	

NSString *template = @"http://.../tile?z={z}&x={x}&y={y}";
overlay = [[MKTileOverlay alloc] initWithURLTemplate:template];
overlay.canReplaceMapContent = YES;

MKDirectionRequest	and	MKDirectionResponse	
Many	mobile	users	rely	on	directions	from	their	device	and	in	iOS	7	developers	can	
now	provide	them	within	the	context	of	your	app	instead	of	switching	to	the	Maps	
application.		You	start	your	request	with	a	source	and	destination.	Other	options	
include	alternate	routes,	transport	type	and	time	of	departure/arrival.	

MKDirectionsRequest *request = [[MKDirectionsRequest alloc] init];
 request.source = source;
 request.destination = destination;
 request.requestsAlternateRoutes = YES;
 MKDirections *directions = [[MKDirections alloc]
initWithRequest:request];
 [directions calculateDirectionsWithCompletionHandler:
 ^(MKDirectionsResponse *response, NSError *error) {
 if (error) {
 NSLog(@"Error is %@",error);
 } else {
 [self showDirections:response];

 }
 }];

The	MKDirectionsResponse	provides	a	plethora	of	information	that	includes	an	
array	of	MKRoutes,	each	of	which	contain	an	array	of	MKRouteStep	so	that	you	can	
provide	each	step	of	directions	to	get	your	user	to	their	location.			By	putting	the	
MKRoute	and	MKRoute	steps	in	an	array,	it	makes	it	easy	to	display	the	information	
in	a	table	or	display	the	information	on	a	map	as	in:	

 for (MKRoute *route in _response.routes) {
[_mapView addOverlay:route.polyline level: MKOverlayLevelAboveRoads];

 }

Results	may	be	updated	frequently	as	a	user	moves	with	their	device	so	don’t	cache	
the	results	for	long.			

With	a	similar	feature	in	the	Google	Maps	API,	Google	imposes	a	limit	to	the	number	
of	requests	your	app	can	have	in	a	day.		Apple	has	chosen	to	go	a	different	direction	

and	rate	limit	each	device	instead.,	which	means	there	are	no	per-app	or	per-
developer	usage	limits.		A	device	may	be	throttled	if	it	reaches	high	usage,	which	is	
intended	to	restrain	apps	that	would	be	doing	something	like	recursively	making	
requests.			

3D	Maps	and	MKMapCamera	
You	likely	have	seen	the	3D	perspective	in	the	Maps	app,	that	uses	a	two	@inger	
rotation	to	rotate	the	map	and	a	two	@inger	vertical	pan	to	change	the	pitch	in	the	
map.		In	the	simulator	you	can	also	rotate	with	option+drag	in	a	circle.		For	pitch	use	
option+shift+drag	vertically,	although	I’ve	had	more	success	@licking	vertically	
instead.	

To	take	full	advantage	of	3D	with	iOS7	you	want	to	use	the	MKMapCamera,	which	
allows	you	to	programmatically	adjust	the	same	values	available	to	the	user	through	
gestures.		If	you	have	never	worked	with	cameras	in	a	3D	environment	I	might	
recommend	downloading	Alice,	educational	software	in	a	3D	environment,	for	free	
from	Carnegie	Mellon	University.		It’s	a	fun	way	to	learn	about	3D	viewing	in	
programming.		An	MKMapCamera	has	four	properties:		

1. A	centerCoordinate,	which	is	a	location	on	the	ground.			
2. The	altitude	the	camera	is	from	the	ground.	
3. The	heading	that	is	cardinal	values	from	0	to	360	with	0	pointing	north.	
4. The	pitch	that	is	angle	the	camera	is	tilted,	with	0	meaning	pointing	straight	

down.	
A	straightforward	way	of	setting	up	your	initial	camera	is	to	use	
cameraLookingAtCenterCoordinate:fromEyeCoordinate:eyeAltitude:	for	
example:	

CLLocationCoordinate2D coordsGarage =
 CLLocationCoordinate2DMake(39.287546, -76.619355);
CLLocationCoordinate2D blimpCoord =
 CLLocationCoordinate2DMake(39.253095, -76.6657);
MKMapCamera *camera =[MKMapCamera

cameraLookingAtCenterCoordinate:coordsGarage
fromEyeCoordinate:blimpCoord eyeAltitude:100];

iOS	7	strongly	encourages	state	restoration,	and	users	will	expect	to	return	to	the	
same	map	perspective	upon	returning	to	your	app,	so	it	recommended	that	you	
archive	the	camera	whenever	your	application	becomes	inactive.		For	convenience	
the	MKMapCamera	implements	NSSecureCoding.		

Static	Map	Snapshots	with	MKMapSnapshotter	
True	to	its	name,	MKMapSnapshotter	allows	developers	to	take	a	static	image	
snapshot	of	a	map	view.		First	you	need	to	set	up	the	options	with	
MKMapSnapshotOptions	to	set	items	such	as	the	size,	scale,	camera,	and	mapType.		
Alloc	and	initWithOptions	the	MKMapSnapshotter.		Call	
startWithCompletionHandler	on	the	MKMapSnapShotter,	which	returns	a	
MKMapSnapshot	that	contains	an	UIImage	property,	image.		There	is	a	sample	of	

http://www.alice.org

taking	a	snapshot	and	saving	to	the	user	photos	in	the	attached	project.		The	
MKMapSnapshot	will	not	include	annotations	or	overlays,	the	developer	must	draw	
them	afterword.		The	pointForCoordinate	method	can	be	used	to	translate	the	
position	of	the	annotation	or	overlay	coordinate	value	to	its	respective	location	
inside	the	image’s	coordinate	space.	

Closing	
This	post	presents	new	features	of	MKMapView	and	related	classes	that	help	extend	
functionality	to	your	iOS7	apps.		Now	you	can	take	on	the	world	with	con@idence,	or	
at	least	display	it	in	your	app.		If	you	have	questions	you	may	contact	me	at	
strohtennis	@	gmail.

